
4TH EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES

Tuning and comparing fault diagnosis methods
for aeronautical systems via Kriging-based optimization

Julien Marzat ?,??, Hélène Piet-Lahanier ?, Frédéric Damongeot ?, Eric Walter ??

?ONERA – The French Aerospace Lab, F-91761 Palaiseau, France
<FirstName>.<LastName>@onera.fr

??L2S, CNRS-SUPELEC-Univ Paris-Sud, Gif-sur-Yvette, France
<FirstName>.<LastName>@lss.supelec.fr

Abstract
Many approaches address fault detection and isolation (FDI) based on analytical redundancy. To rank
them, it is necessary to define performance indices and realistic sets of test cases on which these per-
formance indices will be evaluated. For the ranking to be fair, each of the methods under consideration
should have its internal parameters (often called hyperparameters) tuned optimally. However, no mathe-
matical model linking hyperparameters and performance is available a priori. In this paper, we propose
to use a combination of tools developed in the context of computer experiments to build such a model
from a limited number of numerical evaluations of the performance indices at carefully chosen values of
the hyperparameters. The optimal tuning of fault diagnosis methods may prove to be strongly sensitive
to specifics of the test cases. This is why the methodology is extended so as to provide a tuning that is
robust to variability in the conditions of use. The performance criteria are then replaced by their worst-case
values when the sources of variability are assumed to belong to some predefined sets. This methodology
is applied to tune fault diagnosis approaches on an aeronautical case study.

1. Introduction

Many approaches address fault detection and isolation (FDI) based on analytical redundancy. A review of the main
methods can be, e.g., found in [1–3]. Ranking these methods makes it necessary to define performance indices and
realistic sets of test cases on which these performance indices will be evaluated. For the ranking to be fair, each of the
methods under consideration should have its internal parameters (often called hyperparameters) tuned optimally. This
is a key issue, as the potential of each method derives directly from this tuning.

However, except in trivial cases, no mathematical model linking hyperparameters and performance is available a
priori. In this paper, we propose to use a combination of tools developed in the context of computer experiments [4] to
build such a model from a limited number of numerical evaluations of the performance indices at carefully chosen val-
ues of the hyperparameters. The methodology to be presented is particularly well-suited to computationally-intensive
performance indices, which are the rule if the test cases are realistic enough. The approach is based on Kriging [5, 6],
which is used to build approximate models linking hyperparameters to performance indices, based on a small number
of simulation results. These models are then used to optimize the hyperparameters using a procedure known as Efficient
Global Optimization (EGO) [7, 8].

Optimal tuning of fault diagnosis methods should not be too sensitive to specifics of the test cases. This is
why the methodology is extended so as to provide a tuning that is robust to variability in the conditions of use. The
performance criteria are then replaced by their worst-case values when the sources of variability are assumed to belong
to some predefined set.

The procedure, in its basic and robust versions, is illustrated by the tuning and comparison of two classical fault
diagnosis architectures applied on an aeronautical test case.
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2. Problem formulation

This paper focuses on fault detection in aeronautics, for instance applied to an air-to-air missile (see Section 3.3).
Several methods can be used for detecting faults occurring on this system such as an observer-based residual generator
or other types of filters. The quality of the results obtained via each method depends strongly on the adequacy of its
tuning to the problem to be treated. This tuning is parameterized by a vector of hyperparameters, defined as xc ∈ Xc,
where Xc is assumed to be a known compact set. The performance measure of fault detection is assumed to be
quantified by the real scalar y(xc) to be minimized. The numerical value of y(xc) for any feasible numerical value of xc
is obtained by simulating fault scenarios for the aeronautical vehicle and evaluating the quality of detection using the
method under consideration for this value of the hyperparameter vector. The complex simulation of such a test case is
illustrated in Figure 1, including the dynamics of the aircraft, its control loop and a fault detection scheme composed
of a residual generator and an evaluation test.

Figure 1: Simulation of the test case

Figure 2: Boolean decision function

Assuming that the output of the detection procedure is a Boolean signature (see Figure 2) on whether a spe-
cific fault has appeared, the performance measure y(·) can be defined as some trade-off between false-alarm and non-
detection rates. The test is supposed to run from ton to thor, and the fault starts at tfrom ∈]ton, thor[. Then, the false-alarm
rate is

rfd =

∑
i ti

fd

tfrom − ton
, (1)
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where ti
fd is the i-th period of time where the decision is true in [ton; tfrom] and the non-detection rate

rnd =

∑
i ti

nd

thor − tfrom
, (2)

where ti
nd is the i-th period of time where the decision is false in [tfrom; thor].

The cost function to be used in this paper to measure performance of fault diagnosis methods is

y(xc) = rfd + rnd. (3)

This is a simple trade-off between the conflicting objectives of minimizing false alarms and non detections. Tuning can
then be formalized as the search for

x̂c = arg min
xc∈Xc

y(xc). (4)

3. Tuning via Kriging

As y(·) can only be evaluated via possibly very costly numerical simulation at sampled points, a black-box global
optimization method is used, which has become very popular in the context of computer experiments. It has been
applied in [8] to tune several fault detection methods on the simple example of a change in the mean of a signal subject
to Gaussian or uniformly distributed noise. The overall procedure is recursive and presupposes that a set of values of
the performance index has already been computed, yc,nc = [y(xc,1), ..., y(xc,nc )]

T, corresponding to an initial sampling
of nc points in Xc, Xc,nc = [xc,1, ..., xc,nc ]. First, a Kriging model (Section 3.1) is fitted to approximate the mapping
from the hyperparameter vector xc to the scalar performance measure y(·). Then, an iterative optimization procedure
(Section 3.2), taking advantage of the Kriging model, is employed to look for a feasible global minimizer x̂c of the
performance index.

3.1 Kriging

The unknown performance function y(·) is approximated by

Y(xc) = fT (xc) b + Z(xc), (5)

where fT (xc) b is a classical regression model with the entries of f (xc) polynomial in the entries of xc and the regression
coefficients b to be estimated. Z(·) is a zero-mean Gaussian process with known (or parametrized) covariance function
k (·, ·). Based on this modelling, Kriging is the search for the best linear unbiased predictor (BLUP) of Y(·) [5, 9].

The covariance function k (·, ·) is usually considered as unknown, and expressed as

k
(
Z

(
xc,i

)
,Z

(
xc, j

))
= σ2

ZR
(
xc,i, xc, j

)
, (6)

where σ2
Z is the process variance and R (·, ·) some parametric correlation function. The parameters of R (·, ·) and σ2

Z

must be fixed or estimated from available data. R
(
xc,i, xc, j

)
is often assumed to depend only on the displacement vector

h = xc,i − xc, j. In this paper, we adopt the classical power exponential correlation function [4],

R (h) = exp

− d∑
k=1

∣∣∣∣∣hk

θk

∣∣∣∣∣2
 , (7)

where hk is the k-th component of h. For our application, empirical Kriging was used, which means that the covariance
parameters are estimated in the maximum-likelihood sense. To simplify presentation, they will be considered as known
in what follows and will not appear in the formulas. Define R as the n × n matrix such that

R(i, j) = R
(
xc,i, xc, j

)
, (8)

r(xc) as the n vector
r (xc) =

[
R

(
xc, xc,1

)
, ...,R

(
xc, xc,n

)]T (9)

3



and F as the n × dim b matrix
F =

[
f
(
xc,1

)
, ..., f

(
xc,n

)]T . (10)

The maximum-likelihood estimate b̂ of the vector of the regression coefficients b is

b̂ =
(
FTR−1F

)−1
FTR−1yc,nc . (11)

The prediction of the mean of the Gaussian process at xc ∈ Xc is then

Ŷ(xc) = fT (xc) b̂ + r (xc)T R−1
(
yc,nc − Fb̂

)
. (12)

Another crucial property of Kriging that will be exploited in the search for a global optimization of the performance
index is the ability to compute the variance of the prediction error [10] as

σ̂2 (xc) = σ2
Z

(
1 − r (xc)T R−1r (xc)

)
. (13)

This variance can be used to assess the confidence in the prediction (12) at any point xc ∈ Xc. In particular, it is equal
to zero for all the sampled points in Xc,nc if simulation errors are deemed negligible as here.

3.2 Efficient Global Optimization (EGO)

The idea of EGO [11] is to use the Kriging predictor (12) and the additional confidence information provided by (13)
to find an (nc + 1)-st vector in Xc at which the complex simulation should be run. This point is chosen by maximizing
a criterion that measures the interest of an additional evaluation at xc, given the past results yc,nc obtained at Xc,nc . A
possible choice for this criterion is the Expected Improvement (EI) [7],

EI(xc, y
nc
min) = σ̂ (xc)

[
uΦ (u) + φ (u)

]
, (14)

where Φ is the cumulative distribution function and φ the probability density function of the normalized Gaussian
distribution N (0, 1), with also

u =
ync

min − Ŷ (xc)
σ̂ (xc)

, (15)

ync
min = min

i=1...nc

{
y
(
xc,i

)}
. (16)

The maximization of EI achieves a trade-off between local search (numerator of (15)) and the exploration of unknown
areas (where σ̂ is high), and is thus well suited for global optimization. The EGO algorithm proceeds as follows.

1. Choose an initial sampling Xc,nc and compute yc,nc .

2. Fit a Kriging predictor on those data points.

3. Compute (16) and find a new point xnc+1 where to evaluate y (·) by maximizing (14)

4. Append xnc+1 to Xc,nc , append y(xnc+1 ) to yc,nc and increment nc by one.

5. Go to step 2 until {max EI(·)} hits a lower threshold ε or until nc exceeds a predefined sampling budget nmax.

The estimate of the global minimum is finally given by a last call to (16), and the corresponding argument in Xc,nc is
an estimate of a global minimizer. To obtain the results presented in this paper, we used the toolbox SuperEGO [12].
Its parameters have been set to ε = 10−4 and nmax = 100.

3.3 Illustrative example

The test case is the reduced longitudinal model of a missile flying at a constant altitude of 6000 m. The state vector,
consisting of the angle of attack, angular rate and Mach number, is x = [α, q,M]T. The control input is the rudder angle,
u = δ, and the available measurement is the normal acceleration, γ = az. The linearized model around the operating
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point x0 = [ᾱ, q̄, M̄]T = [20 deg, 18.4 deg/s, 3]T is given by the following state-space model, after discretization with a
time step of 0.02s,  xk+1 = Axk + Buk

γk = Cxk + Duk + wk + fk
(17)

where

A =

 0.9163 0.0194 0.0026
−5.8014 0.9412 0.5991
−0.0485 −0.005 0.996

 , B =

 −0.0279
−2.5585
−0.0019

 ,
C =

[
−2.54 0 −0.26

]
, D = −0.204 .

(18)

This model is simulated on a time horizon of 50 seconds. Measurement γ = az suffers at time = 25 s from a progressive
fault f steadily increasing with a slope equal to 0.1. This measurement is also corrupted by a Gaussian noise w, with
zero mean and standard deviation 10−3.

3.3.1 Fault diagnosis methods

Two methods are considered to detect this sensor fault, in line with the architecture described in Figure 1. The first
one uses a Luenberger observer and the other is based on a Kalman filter [13]. A residual is produced by each filter as
the difference between the available measurement and the predicted output value. In both schemes, the residuals are
analyzed using a CUSUM test [14].

The performance of a Luenberger observer depends on the settings of its three poles [p1, p2, p3], while the tuning
of a Kalman filter relies on the choice of an initial covariance matrix W for the state vector perturbation (dimension 3)
and of a covariance matrix V for measurement noise (dimension 1), both matrices are assumed to be diagonal. This
corresponds to 4 hyperparameters [w1,w2,w3, v1], such that

W =

 w1 0 0
0 w2 0
0 0 w3

 , V = v1 (19)

The initial value of the covariance matrix P of the state estimation error is arbitrarily set to identity (dimension 3). Initial
estimated state vector is identical for both filters and taken as [17, 21, 2.5]T. The CUSUM test has two hyperparameters,
namely the minimum size of change to be detected µ and a threshold λ. The tuning hyperparameters of each scheme
are those of the residual generator and of the statistical test. Search spaces for these values for each of the competing
methods are as indicated in Table 1.

Table 1: Space search of hyperparameters for the two diagnostic methods

Observer and CUSUM p1 ∈ [0; 1] p2 ∈ [0; 1] p3 ∈ [0; 1] µ ∈ [0.01; 5] λ ∈ [0.1; 20]

Kalman and CUSUM w1 ∈ [0; 2] w2 ∈ [0; 2] w3 ∈ [0; 2] v1 ∈ [0; 10] µ ∈ [0.01; 5] λ ∈ [0.1; 20]

(a) Observer-based scheme (b) Kalman-based scheme

Figure 3: Boolean decision functions for both schemes with best hyperparameter tuning
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3.4 Results

One hundred initialisations with the tuning methodology have been effected. The number of simulations required for
obtaining a suitable tuning remains low (Table 2), and so is the variation on the results. The use of a Kalman filter
proves to be more efficient in this setup than that of a Luenberger observer. The resulting decisions are illustrated
on Figure 3 .

Table 2: Tuning of complete decision approaches

Observer and CUSUM Kalman and CUSUM

Ranking 2 1

Median of performance 0.0455 0.0184

standard deviation of performance 0.009 0.0024

Average number of simulations 102 136

standard deviation of number of simulations 20 21

False alarm rate 0 0

Non detection rate 0.0455 0.0184

Hyperparameter values p1 = 0.7675 p2 = 0.8498 w1 = 0.5428 w2 = 0.2593

for median of performance p3 = 0.8951 w3 = 1.1015 v1 = 2.2291

µ = 0.4537 λ = 2.91 µ = 0.134 λ = 4

4. Extension to robustness to environmental conditions

The previous approach does not take into account the variability of environmental conditions (model and measurement
uncertainty, variation in atmospheric conditions or magnitude of faults, etc). However, the simulation response can
vary greatly with these conditions at the risk of making the optimal tuning inadequate. Environmental conditions are
assumed to be described by a vector of environmental variables xe belonging to a known compact set Xe.

The tuning of a fault detection method should remain valid for a reasonable set of possible values of the envi-
ronmental variables. Most of the studies on computer experiments in this context use a probabilistic modeling of the
environmental variables [15]. We assume instead that bounds of the values taken by these variables are available and
look for an optimal tuning in the worst-case sense. Worst-case optimality is a concern that has been raised in many
studies on fault detection, since [13, 16].

Since no algorithm seemed to have been reported to deal with environmental variables for the robust optimization
of black-box functions evaluated by costly computer experiments, we have proposed such a procedure in [17]. The
problem to be solved can be formalized as that of finding x̂c and x̂e such that

{̂
xc, x̂e

}
= arg min

xc∈Xc
max
xe∈Xe

y(xc, xe), (20)

which is a difficult problem since both spaces Xc and Xe are now continuous. This corresponds to the search for the
best hyperparameters for the worst values of the environmental variables. The optimization procedure proposed to
solve (20) combines the relaxation algorithm described in [18] with EGO (Section 3.2). A detailed description of the
resulting robust tuning algorithm can be found in [17]. The main principles are to transform (20) into min

xc∈Xc,τ
τ

subject to y(xc, xe) ≤ τ, ∀xe ∈ Xe

, (21)

and then to solve this minimization problem (that has an infinite number of constraints) by an iterative relaxation
procedure that computes a finite number of constraints from values in Xe. The resulting procedure involves two
intertwined global-optimization steps, which are addressed with EGO.
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4.1 Illustrative example

The test case and the methods to be compared remain the same as in Section 3.3. The sources of variability are the
magnitude of the incipient sensor fault f and the noise level on w. The slope of the fault s and the standard deviation
ζ of the Gaussian white noise are then the environmental variables to which the tuning should be robust, xe = [ζ, s]T.
The search space Xe is such that ζ ∈ [10−7, 10−3] and s ∈ [10−3, 10−1]. The hyperparameter spaces for the two schemes
are as before (see Table 1).

One hundred runs of the entire procedure have again been performed to assess convergence, repeatability and
dispersion of its results. Performance level, number of evaluations and values of the worst-case environmental variables
and of the best hyperparameter tuning for both schemes are reported in Table 3. It is important to note that the number of
evaluations is quite low with an average sampling of approximately 33 points per dimension, leading to a quick robust
tuning. Moreover, the repetition of the procedure suggests that on this example an acceptable value for the tuning is
always obtained, and that the worst-case is correctly identified. Indeed, for both strategies, the worst environmental
conditions are located near the smallest value of the fault and highest value of the noise, which is what common sense
suggests.

Table 3: Results for 100 replications of the minimax tuning procedure

Observer and CUSUM Kalman and CUSUM

Ranking 2 1

Median minimax performance 0.114 0.0312
standard deviation of performance 4.7 · 10−2 1.97 · 10−2

Average number of simulations 168 199
standard deviation nb simulations 26 8

Environmental vector xe

Noise level ζ 9.8 · 10−4 9.81 · 10−4

Fault slope s 1 · 10−3 1 · 10−3

Hyperparameter vector xc

Hyperparameter values p1 = 0.73 p2 = 0.726 w1 = 1.57 w2 = 1.11

for the median performance p3 = 0.72 w3 = 1.06 v1 = 2.04

µ = 0.065 λ = 4.553 µ = 0.12 λ = 3.33

(a) Observer-based scheme (b) Kalman-based scheme

Figure 4: Boolean decision function for both schemes with robust tuning and the worst-case environmental variables

Figure 4 shows the decision functions obtained for both diagnosis methods tuned at the best hyperparameters
under the conditions of the worst-case environmental conditions. It clearly appears on this example that the Kalman
filter scheme is much better at detecting small incipient faults than the observer scheme, which is not conceived to take
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(a) Observer-based scheme (b) Kalman-based scheme

Figure 5: Value of the objective function over Xe for the minimax-optimal hyperparameters

into account such noise level. Figure 5 shows the value of the objective function y over Xe for the estimated worst-case
optimal tuning of the hyperparameters of the two methods. This shows that the optimal worst-case tuning leads to good
performance for other environmental conditions.

5. Conclusions and perspectives

This article has presented a framework for automatically tuning fault diagnosis methods. The setup only requires a
simulation of a collection of test cases, where the internal parameters of candidate methods may be adjusted and a
measure of performance computed. The tuning methodology relies on fitting the mapping from hyperparameters to
performance level via Kriging, which is then used to find the optimal hyperparameters. Since any simulation should
take into account uncertainty, a robust version of this tuning procedure has been developed in the worst-case sense.
It allows one to find at the same time the optimal hyperparameters and the worst environmental conditions. These
strategies have been illustrated on an academic version of an aeronautical case study, where two competing fault
diagnosis schemes comprising a residual generator and a statistical test were applied. The number of evaluations of the
simulation to achieve an acceptable tuning value is always very low, which makes it practicable when the associated
computational cost is expensive. The proposed procedures may be readily extended to other more realistic aerospace
applications.
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